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Abstract

In this paper, the detailed two-dimensional infinite element method (IEM) formulation with infinite element (IE)–

finite element (FE) coupling scheme for investigating mode I stress intensity factor in elastic problems with imbedded

geometric singularities (e.g. cracks) is presented. The IE–FE coupling algorithm is also successfully extended to solve

multiple crack problems. In this method, the domain of the primary problem is subdivided into two sub-domains

modeled separately using the IEM for the multiple crack sub-domain, and the FEM for the uncracked sub-domain. In

the IE sub-domain, the similarity partition concept together with the IEM formulation are employed to automatically

generate a large number of infinitesimal elements, layer by layer, around the tip of each crack. All degrees of freedom

related to the IE sub-domain, except for those associated with the coupling interface, are condensed and transformed to

form a finite master IE for each crack with master nodes on sub-domain boundary only. All of the stiffness matrices

constructed in the IE sub-domains are assembled into the system stiffness matrix for the FE sub-domain. The resultant

FE solution with a symmetrical stiffness matrix, having the singularity effect of imbedded cracks in IEs, is required only

for solving multiple crack problems.

Using these efficient numerical techniques a very fine mesh pattern can be established around each crack tip without

increasing the degree of freedom of the global FEM solution. One is easily allowed to conduct parametric analyses for

various crack sizes without changing the FE mesh. Numerical examples are presented to show the performance of the

proposed method and compared with the corresponding known results where available.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The stress analysis of an elastic body with imbedded geometric singularities (e.g. cracks, dissimilar

material junctions, re-entrant corners, etc.) is a topic of practical importance in a broad variety of engi-

neering applications. The finite element method (FEM) is the most popular and well-developed method for

analyzing such problems (Chan et al., 1970; Buettner and Quesnel, 1993; Su et al., 2001). However, it is well
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known that direct application of the FEM to model the singularity point vicinity requires local refinement,

which in turn requires a great number of elements, extensive computer memory, and converges very slowly

because of deficiencies in the singularity representation. To overcome these difficulties, special elements

such as singular elements (Yosibash and Szab�oo, 1995; Tan and Meguid, 1996), hybrid elements (Kang and
De Saxc�ee, 1992; Chow et al., 1995; Leung and Su, 1995), and global–local elements (Mote, 1971; Her, 2000;

Barut et al., 2001) were developed to model the crack region combined with a system stiffness matrix. Only

a few degrees of freedom are required to model the singular behavior ahead of the crack tip. However, some

of these applications are limited to solving single crack problems with simplified load conditions. Besides,

some of the special element shapes are fixed to certain shape types (e.g. a round or rectangular shapes) that

also prevent them from being easily combined with the existing FEM codes. Another attractive and

powerful computational technique is to model the singularity region using the boundary element method

(BEM). The BEM is based on an integral equation formulation and requires discretization of the problem
boundary only. A wide variety of elastic crack problems have been successfully analyzed using BEM

(Cruse, 1988; Xiao and Hui, 1994; Kermanidis and Mavrothanasis, 1995; Sladek and Sladek, 1995;

Katsareas and Anifantis, 1995; Yan and Nguyen-Dang, 1995; Bois-Grossiant and Tan, 1995; Ang and

Clements, 1995; Hasebe et al., 1996; Mukhopadhyay et al., 1998). The detailed descriptions are not

mentioned here. The subsequent developments in BEM, such as the variable singularity boundary element

(Mukhopadhyay et al., 2000), combined BEM with evolutionary algorithms (Burczynski and Beluch, 2001)

and hypersingular BEM accelerated with fast multipole method (Yoshida et al., 2001) were recently pro-

posed for improving the solution accuracy and providing fast computational speed in computation. In spite
of the many BEM advantages, it still has several drawbacks. To derive the BEM integral equation for-

mulation, a fundamental singular solution is needed that satisfies the governing differential equation in the

domain as basis functions for an approximate solution that has difficulty in considering inhomogeneous

behavior. Moreover, the global solution matrices formed from BEM are generally fully populated and non-

symmetrical, leading to solve the solutions by time consuming direct inverse methods that are difficult to

link with FEM for large sized industrial applications.

Mathematicians devised an alternate numerical method called the ‘‘infinite element method’’ (IEM) in

the 1970s to deal with geometric singular problems. The basic idea behind IEM is to discretize the problem
domain using a group of countable infinity elements with a designed nodal sequence so that each element-

layer is similar to the other layers (unvaried stiffness). This concept was proposed first by Silvester and

Cermark (1969) using the finite difference method. Recently, Go and Lin (1991) and Go and Chen (1992)

applied this concept with a mesh generation scheme to solve stress singularity problems. Their works were

limited to dealing with finite layers with similar elements and could not assure that the numerical solutions

would converge. Thatcher (1975, 1978) used infinite numbers of elements and derived a recurrence relation

for the Laplace� equation in a systematic way to solve problems with re-entrant corners and unbounded

domains. At the same time, Ying (1978, 1992), Han and Ying (1979), and Ying and Pan (1981) indepen-
dently developed the mathematical foundations of an IEM formulation for the Laplace� equation, plane
elasticity problems, corner problem and exterior stokes problems. Ying (1992) proved that there exists a

transformation matrix to relate the nodal displacement vector between the inner and outer layers, therefore

the total stiffness matrix could degenerate to form a combined stiffness matrix related only to boundary

nodes and tractions. More importantly, he proved that the combined stiffness matrix is a semi-positive

definite matrix that could converge to a certain constant quantity when the number of layers approached to

infinity. Several simple examples were presented to demonstrate the IEM accuracy without describing the

detailed numerical procedure. Guo (1979) proved that the concept of similar elements could be extended to
arbitrary isoparametric elements. He also constructed a transformation procedure to combine the local

stiffness matrix layer to layer. No numerical examples were presented in his paper. As a consequence, FEM

can solve problems with complicated domain and boundary conditions but cannot manage for singularity

areas in the domain. Conversely, IEM is suitable for solving singularity problems but is applicable only for
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relatively simpler shaped domains. A better strategy involves combining both methods to deal with all

kinds of singularity problems.

In this paper, the algorithms derived in previous studies (Guo, 1979; Ying, 1992) are worked out in detail

to construct an IEM numerical procedure, which is extended in combination with FEM to solve multi-
crack problems. In this method each crack tip occupies a sub-domain with an arbitrary but relatively simple

shape (e.g. rectangular shape) surrounding the crack tip. The similarity partition concept and IEM for-

mulation are employed to automatically generate a large number of infinitesimal elements layer by layer

distributed over the IE sub-domain. All degrees of freedom related to each IE sub-domain, except for those

associated with the coupling interface, are condensed and transformed to form an equivalent combined

element with master nodes degrees of freedom only. This is regarded as a regular finite element and called

‘‘infinite element’’ (IE). All other crack tips with similar IE sub-domains will have the same IE stiffness

matrix. Finally, all the stiffness matrices constructed in the IE sub-domains are assembled into the system
stiffness matrix for the FE sub-domain. The resultant FE solution with a symmetrical stiffness matrix,

having the singularity effect of imbedded cracks in IEs, is required only for solving multiple crack problems.

Because the IEM solutions are given only in the vicinity of the crack tips, the solutions outside the singular

regions are obtained using the conventional FEM. The advantage of being able to model complex

boundary conditions and maintain the mesh refinement effect is therefore preserved.

A convergence criterion is proposed for the IEM formulation to extend the imaginary ‘‘infinity layer’’

concept into practical actualization, and assure that the numerical solutions of the IE stiffness matrix will

converge. No prior governing assumption is required and no special FEs, such as singular, hybrid and
boundary elements, need be incorporated. No further parametric refinement analysis is needed because of

the high IEM formulation convergence. Numerical examples are presented and compared with the cor-

responding known results to validate the accuracy of the IEM and IEM/FEM codes and show the per-

formance of the proposed method.

2. Infinite element modeling formulation

2.1. Similarity of two-dimensional isoparametric elements

As mentioned earlier, the similar partition concept is the key to the IEM. This concept can be illustrated

using the two similar general quadrilateral elements shown in Fig. 1. For element I, the local nodes i are
numbered 1, 2, 3, and 4 in the counterclockwise direction. ðxIi ; yIi Þ denotes the global coordinate value of

node i. Taking the global origin O and n as the center of the similarity and proportionality ratio, one creates

element II, whose nodal coordinate value and length dimensions are similar to those of element I. The

relationship between the corresponding nodes can be expressed as

ðxIIi ; yIIi Þ ¼ ðnxIi ; nyIi Þ ð1Þ

where n 2 ð0; 1Þ or n 2 ð1;1Þ, which implies the scale ratio. From the isoparametric representation, shape

functions are used to express the coordinates of a point within element I in terms of the nodal coordinates.

Thus we have

xI ¼
X4

i¼1

/iðf; gÞxIi ð2Þ

yI ¼
X4

i¼1

/iðf; gÞyIi ð3Þ
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Multiplying both sides by n and in view of Eq. (1)

xII ¼ nxI ¼
X4

i¼1

/iðf; gÞxIIi ð4Þ

yII ¼ nyI ¼
X4

i¼1

/iðf; gÞyIIi ð5Þ

From Eqs. (4) and (5), both quadrilateral elements II and I could be mapped using the same square shaped

master element, which is defined in natural coordinates. In other words, if one isoparametric element has
nodal coordinate values similar to the ones of other elements, they are designated as similar elements.

By mapping from the physical coordinates to the natural coordinates, the associated element stiffness

matrix ½K � for a 2-D elastic problem is then calculated using

½K � ¼
Z 1

�1

Z 1

�1

½B�T½D�½B� det½J �dfdg ð6Þ

where

½B� ¼

o/i

ox
0 	 	

0
o/i

oy
	 	

o/i

oy
o/i

ox
	 	

2
666664

3
777775 ð7Þ

Fig. 1. Schematic diagram for similar 2-D elements (source: Guo, 1979).
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½D� ¼ E
1� m2

1 m 0

m 1 0

0 0
1� m
2

2
64

3
75 for plane stress ð8Þ

½D� ¼ E
ð1þ mÞð1� 2mÞ

1� m m 0

m 1� m 0

0 0
1� m
2

2
64

3
75 for plane strain ð9Þ

½J � ¼

ox
of

oy
of

ox
og

oy
og

2
664

3
775 ¼

	 	 o/i

of
	 	

	 	 o/i

og
	 	

2
664

3
775

	 	
	 	
xi yi
	 	
	 	

2
66664

3
77775 ð10Þ

Recalling Eq. (1) and from Eqs. (7) and (10), we have

½B�II ¼ 1

n
½B�I ð11Þ

det½J �II ¼ n2 det½J�I ð12Þ
Substituting Eqs. (7), (8) and (10) into Eq. (6), it is obvious that

½K �II ¼ ½K �I ð13Þ
Eq. (13) indicates the stiffness dimensional independence of similar 2-D isoparametric elements. The

development of higher-order elements can be investigated by following the same basic steps.

2.2. Basic infinite element method formulation

The IEM formulation for two-dimensional elasticity problems is presented in this section. The partition

concept described in the previous section can be applied to either a perfect body or a body with an im-

bedded singularity (e.g. crack), as shown in Fig. 2. The meshing steps are described as follows: first, the

outer boundary, C0, is properly discretized with the total number of m master nodes, ordered in the

counterclockwise direction. Second, by choosing a similar partition center, O, and taking a constant

n 2 ð0; 1Þ, similar curves C1;C2; . . . ;CS; . . . of C0 are constructed with center O and proportionality con-

stants n1; n2; . . . ; nS; . . . ; respectively. The region bounded between Ci�1 and Ci is called the ith element-layer
ði ¼ 1; 2; . . . ; sÞ, where s is number of chosen element-layers. Third, each individual Ci is regularly dis-

cretized like C0, the nodal number and coordinates on each individual Ci can be determined from the master

node coordinates with geometrically similar conditions. Fourth, every element-layer is auto-meshed into

several four-node quadrilateral elements that are similar to one another from the element-layers in a radial

direction. The total number of divided elements within one element-layer is m for the perfect domain and

m� 1 is for a cracked domain.

Considering the outermost element-layer, the element stiffness matrix of each quadrilateral element can

be calculated and assembled in an element-layer stiffness matrix using the conventional FE formulation.
The stiffness matrix of the ‘‘first element-layer’’, can be expressed as suggested in previous studies (Guo,

1979; and Ying, 1992)

Ka �AT

�A Kb

	 

4m�4m

ð14Þ
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where Ka, Kb, and A are the sub-matrices of the stiffness matrix with the same dimension 2m� 2m. AT is the
transpose of A. Since the global layer stiffness matrix is symmetrical and banded, therefore Ka, Kb and A
are symmetrical and banded matrices. The nodal displacement vector di of nodes on Ci is defined as

di � ui1 vi1 ui2 vi2 	 	 	 uim vim
� �T ð15Þ

The nodal force vector f i of nodes on Ci is defined as

f i � f i
1x f i

1y f i
2x f i

2y 	 	 	 f i
mx f i

my

� �T ð16Þ

The ith element-layer stiffness matrix presents the nodal force and displacement vector relationships for

Ci�1 and Ci. Recalling Eq. (14) and treating the first element-layer as an example, we have

Ka �AT

�A Kb

	 

	 d0

d1

	 

¼ f 0

f 1

	 

ð17Þ

Two algebraic equations are extracted from Eq. (17) as follows

Kad0 � ATd1 ¼ f 0 ð18Þ

�Ad0 þ Kbd1 ¼ f 1 ð19Þ

where d0 and f 0 denote the nodal displacements and tractions on C0, respectively. According to the fore-

going similarity principle and consequent regular meshing rule, it is obvious that the stiffness matrices of all
of the element-layers are the same. Hence we can express the stiffness matrix of the s element-layers (from

1st element-layer to sth element-layer) as a set of algebraic equations, namely

Fig. 2. IE mesh around reference point O.
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Ka �AT

�A Kb

" #
	

d0

d1

	 

¼

f 0

f 1

	 

for layer 1 ð20Þ

Ka �AT

�A Kb

" #
	

d1

d2

	 

¼

�f 1

f 2

	 

for layer 2 ð21Þ

Ka �AT

�A Kb

" #
	

d2

d3

	 

¼

�f 2

f 3

	 

for layer 3 ð22Þ

..

.

Ka �AT

�A Kb

" #
	

ds�1

ds

	 

¼

�f s�1

f s

	 

for layer s ð23Þ

Adding the second equation for the ith element-layer and the first equation for the ðiþ 1Þth element-

layer, and letting K ¼ Ka þ Kb, we have

Kad0 � ATd1 ¼ f 0 ð24Þ
� Ad0 þ Kd1 � ATd2 ¼ 0 ð25Þ

..

.

� Adi�1 þ Kdi � ATdiþ1 ¼ 0 ð26Þ

..

.

� Ads�2 þ Kds�1 � ATds ¼ 0 ð27Þ
� Ads�1 þ Kbds ¼ f s ¼ 0 ð28Þ

Let MS ¼ Kb and substitute it into Eq. (28), we have

ds ¼ M�1
S Ads�1 ð29Þ

By substituting Eq. (29) into Eq. (27), we get

�A 	 ds�2 þ ðK � ATM�1
S AÞ 	 ds�1 ¼ 0 ð30Þ

Comparing Eq. (29) with Eq. (30), two useful iteration formulas can be inferred

M i ¼ K � ATM�1
iþ1A ð31Þ

di ¼ ðM�1
i AÞdi�1 ¼ Xdi�1 ð32Þ

where X denotes a transfer matrix representing the relationship of di and di�1. Because MS is known to

equal Kb, then MS�1;MS�2; . . . ;M1 can be iterated out using Eq. (31). From Eq. (32), we have

d1 ¼ M�1
1 Ad0. Substituting d1 into Eq. (24), we obtain the most important formula for IEM. That is

ðKa � ATM�1
1 AÞ 	 d0 ¼ KZ 	 d0 ¼ f 0 ð33Þ

where KZ ¼ ðKa � ATM�1
1 AÞ is called the combined element stiffness matrix which preserves the symmetry

characteristic of global stiffness matrix in FE standard procedures. Once f 0 (the outer surface traction) is

given, d0 can be obtained from Eq. (33). Then d1; d2; . . . ; ds can be found sequentially from Eq. (32). Using
the procedure from Eq. (24) to (28); adding layer by layer, all of the inner layer elements are condensed and

transformed into only one super-element with master nodes at the outer boundary C0 only. This is called
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the IE, as shown in Fig. 3. Consequently the IE can be with arbitrary configuration and arbitrary number

of master nodes. From the physical point of view, we treat the KZ term as the equivalent stiffness matrix of

the IE with a dimension of 2m� 2m. Although the total degree of freedom of KZ is largely reduced, the
mesh refinement effect of large amounts of infinitesimal elements around the singular point is maintained

and does not increase any corresponding round-off errors because of its specific matrix condensation

process. Moreover, to compute KZ , only to calculate the outermost element-layer stiffness matrix with the

chosen n proportion ratio and element-layer number s is need. The CPU time and PC memory storage are

also significantly reduced.

Prior to applying the newly defined IE for further numerical analysis, a detailed convergence study

involving the IE stiffness matrix, KZ , should be considered. Whether the stiffness matrix is convergent or

not depends primarily on the number of layers selected in the IEM formulation. Ying (1992) proved that
KZ is a semi-positive definite matrix that converges at a certain constant quantity when the number of

layers approach infinity. This can be expressed in the following form:

lim
s!1

K
ðsÞ
Z ¼ KZ ð34Þ

where s denotes the number of chosen element-layers. Eq. (34) cannot be directly applied to the numerical

formulation because the term ‘‘infinite’’ is not countable in a physical sense. However, if s is a large enough

finite number, the stiffness matrix K
ðsÞ
Z is approximately equal to KZ . Therefore, we propose observing the

convergence of the diagonal trace terms K
ðsÞ
Z ðj; jÞ. If the first invariant of K ðsÞ

Z , which is used as the criterion

to make sure K
ðsÞ
Z is close enough to KZ , an iterative scheme is established based on the above concept and

a sequence of KZðj; jÞ can be obtained. When the desired accuracy criterion e ¼ jðK ðiþ1Þ
Z ðj; jÞ�

K
ðiÞ
Z ðj; jÞÞj=jðK ðiþ1Þ

Z ðj; jÞÞj � 100%6 10�6 is satisfied, the iterative process is terminated and the critical

number of element-layers, ‘‘scr’’, is determined as equal to the terminated iterative value of j. This denotes
the minimum number of element-layers needed for convergence. The above method is the criterion for

checking the convergence of KZ . Once s is greater than or equal to scr, KZ converges. This implies that there

are enough elements to cover the entire problem domain. Though a tiny void exists, it can be neglected

because it does not affect KZ . Conversely, if s is smaller than scr, a small void actually exists in the domain

and it cannot be neglected.

Another important factor also considered in the convergence study is the proportionality ratio n. In-
tuitively, it is believed that the greater the chosen n, the more scr is needed. Variations in n do not change the

amount of computational works but does affect the resulting numerical solution. The detailed discussion on
this is postponed until Example 3 in Section 3.

Fig. 3. Schematic diagram of IE formation.
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2.3. Infinite element–finite element coupling method

When the problem includes multiple cracks, using IEM to model the entire domain is not favorable.

Therefore an IEM/FEM coupled scheme is proposed using IE to sub-divide the neighborhood of each
crack. Outside the singular IE sub-domains, the solutions are obtained using the conventional FEM. The

master nodes on the outer boundary at each IE are converted into interface nodes between the IE and FE

sub-domains. Because each IE stiffness matrix is pre-determined, those elements can be treated as regular

FEs to be assembled into the global stiffness matrix formed using FEM.

To illustrate the coupling algorithm, a single crack body is shown in Fig. 4 that can be partitioned into

two sub-domains, X and D, separated from the coupling interface, C0, and modeled using the FEM and

IEM, respectively. The algebraic assembled element equations for the FE sub-domain are given by the well-

known FE implementation (Kwon and Bang, 2000)

Kd ¼ F ð35Þ

where K is the global stiffness matrix of the FE sub-domain and F and d are the nodal forces and nodal

displacements, respectively. Furthermore, Eq. (35) can be written as

K couple KT
cf

K cf K fem

	 

	 d0

dfem

	 

¼ F0 fem

F fem

	 

ð36Þ

where d0 and dfem denote the vectors of the IE/FE interface and non-interface nodal displacements, res-

pectively. F0 fem and F fem are the associated loading vectors, respectively. From Eq. (36), the two equations
are extracted as

K coupled0 þ KT
cfdfem ¼ F0 fem ð37Þ

K cfd0 þ K femdfem ¼ F fem ð38Þ
Conversely, the IE sub-domain produces the following algebraic equation using the IEM described in

detail in the previous section

K IEMd0 ¼ F0 iem ð39Þ

Fig. 4. Schematic diagram of IE–FE coupling method.

D.S. Liu, D.Y. Chiou / International Journal of Solids and Structures 40 (2003) 1973–1993 1981



where K IEM ¼ KZ ¼ ðKa � ATM�1
1 AÞ, denotes the combined stiffness matrix KZ of the IE sub-domain. d0

and F0 iem denote the interface displacements and the associated loading vectors, respectively.

Along the IE/FE interface, the displacement compatibility and force equilibrium must be satisfied. Thus

Eqs. (37) and (39) are combined and we have

ðK couple þ K IEMÞd0 þ KT
cfdfem ¼ F0 iem þ F0 fem ¼ 0 ð40Þ

Eqs. (38) and (40) are combined to give the IE–FE final coupled equation of the form:

K couple þ K IEM KT
cf

K cf K fem

	 

	 d0

dfem

	 

¼ ½K IE–FE� 	

d0

dfem

	 

¼ 0

F fem

	 

ð41Þ

It is apparent that the corresponding coupled system stiffness matrix ½K IE–FE� is a symmetrical matrix.

Displacements in the FE sub-domain can be obtained by solving Eq. (41). Once we obtain the interface

nodal displacements d0, the traction along IE/FE interface F0 iem can be found by solving Eq. (39), and the

nodal displacement at each node in the IE sub-domain can be obtained using Eq. (32).
For multiple crack problems, all crack tips can be modeled using the IE, which are then assembled into

the global stiffness matrix formed from the FE sub-domain. Because the similar element concept is ex-

tended, all crack tips with similar IE sub-domains have the same stiffness matrix. Calculating only one of

the IE stiffness matrices is enough for all the others. This technique greatly reduces the computational cost

and work in modeling the required mesh for cracks.

2.4. Calculation of stress intensity factor

Other important quantities such as the K, G, and J-integral in the IE sub-domain can be obtained for the

FE representation. A polar coordinate axis with the origin at the crack tip, namely r and h, is defined and

shown in Fig. 5. The mode I crack tip stress intensity factor (SIF) KI can then be estimated using the es-

tablished crack tip relations. The KI corresponding to the y-directional displacement along the crack surface

(Uy) is approximated using (Chan et al., 1970)

KI ¼
E
8C

lim
r!0

ffiffiffiffiffiffi
2p
r

r
UyðrÞh¼180�
h

� UyðrÞh¼�180�
i

ð42Þ

Fig. 5. Definition of the coordinate system ahead of a crack tip.
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where C ¼ 1 is used for the plane stress condition and C ¼ 1� m2 is used for the plane strain condition. E, m,
and r indicate Young�s modulus, Poisson�s ratio, and the distance from the crack tip for picked nodal

points, respectively.

3. Numerical examples

In this section, six examples are presented to demonstrate the validity of the results obtained using the

proposed IEM and IEM/FEM formulation. The related programs used in this study were programmed in

the MATLAB v.5.3 language and operated on a P-III personal computer. The first simple elasticity

problem is presented to verify the developed IEM codes. The second and third examples are applied using

the IEM and IEM/FEM codes to solve the center crack tension (CCT) problem and compare the solution
accuracy with the analytical solutions. An extended study for oblique edge crack problem is presented in

the fourth example. The fifth and sixth examples are applied using the IEM/FEM codes to calculate SIF for

a strip with four parallel center-through-cracks and a trip with two collinear cracks to demonstrate the

ability of the IE–FE coupling algorithm to solve multiple crack problems.

Example 1. A plate subjected to uniform compressive stress on two free ends

Consider a thin rectangular plate with panel dimensions (400 mm� 200 mm) as shown in Fig. 6. The
elastic modulus and Poisson�s ratio are E¼ 70,000 N/mm2, m ¼ 0:3, respectively. A uniform compressive

stress P of 400 N/mm2 is acted at the two free ends. The points along AB and CD move along x-direction
and are constrained in the y-direction. The analytical displacement fields under plane stress condition for

points along AB and CD are expressed as

u ¼ � 1� m2

E
P 	 x ð43Þ

v ¼ 0 ð44Þ

Fig. 6. Computational model of a plate under compressive stress on two free ends.
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The mesh configuration and node arrangement are shown in Fig. 6. The graph comparing the nodal

displacement field from the theoretical solution and the present IEM solution is shown in Fig. 7. The results

are shown to be in very good agreement.

Example 2. Center crack tension (CCT) problem

Consider a strip with a center through crack 2a and finite width w a subjected to a uniform tensile stress

r, as shown in Fig. 8. The mesh configuration and node arrangement are the same shown in the figure.
Because of the geometric symmetry and the load type, only half of the full strip, with the load and boundary

conditions as shown, need be addressed. A total of 25 master nodes exist, uniformly distributed along the

circumferential directions along boundary C0. The proportionality ratio n is selected as 0.9 to calculate the

stiffness matrix of K IEM.

The analytical expression for the mode I SIF for CCT is expressed as

K I ¼ r
ffiffiffiffiffiffiffiffiffi
ðpaÞ

p
f ða=wÞ ð45Þ

where the factor f ða=wÞ is a function of the crack length a and the strip width w. The factor is found as

follows (Marc and Krishan, 1999)

f ða=wÞ ¼ 1þ 0:256ða=wÞ � 1:152ða=wÞ2 þ 12:2ða=wÞ3 ð46Þ

Fig. 9 represents comparison of the results for the normalized mode I SIF KI=r
ffiffiffiffiffiffi
pa

p
against the ða=wÞ

ratio obtained from the IEM approach, with the analytical solutions from Eqs. (45) and (46). The nu-

merical, analytical data and relative difference (RD) estimate are provided in Table 1. Both the numerical

and analytical results are in good agreement. The maximum difference is less than 5%.

Example 3. IE–FE Coupling method in center crack tension problem

Fig. 10 shows the IEM/FEM coupled computational model of a strip, where D represents the IE sub-
domain, and X represents the FE sub-domain. A total of 25 master nodes are uniformly distributed along

Fig. 7. Comparisons between proposed approach and analytical solution of displacement u along AB and CD shown in Fig. 6.
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Fig. 8. IEM computational model of CCT problem.

Fig. 9. Normalized SIF for CCT by IEM.
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the circumferential directions along the coupling interface C0 to form the IE. The proportionality ratio n is

selected as 0.9 to calculate the IE stiffness matrix of K IEM, which then is assembled into a global system

stiffness matrix for the FE sub-domain X using IE–FE coupling algorithm. One can easily solve for d0 from

Eq. (41), and consequently follow the same procedures as in Example 2 to obtain the mode I SIF for the

crack.

The normalized mode I SIF K I=r
ffiffiffiffiffiffi
pa

p
against the ða=wÞ ratio is plotted in Fig. 11. The numerical,

analytical data and RD estimate are tabulated in Table 2. Good agreement with analytical solution was

obtained. Compared with Example 2, the results obtained using IE–FE coupling method were significantly

improved. The RD was less than 1%.

A parameter study of the various proportionality ratios n using the IE–FE coupling method was also

investigated. The results are given in Table 3. It is clear that subsequently decreasing n to 0.5 leads to

increasing the RD not more than 2.1%. Increasing n up to 0.95 does not significantly affect the results.

Example 4. IE–FE coupling method in slant edge crack problem

The identical application of the IE–FE coupling method described in Example 3 has been used to in-

vestigate the normalized mode I SIF for oblique cracks with different slant angles and crack lengths.

Table 1

Normalized SIF of CCT by IEM

a=w KI=r
ffiffiffiffiffiffi
pa

p
ðn ¼ 0:9Þ

Present RD (%) Theoretical

0.05 1.059084 4.71 1.01145

0.1 1.071472 4.40 1.02628

0.2 1.146188 3.94 1.10272

Fig. 10. IE–FE coupling computational model of CCT problem.
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Consider an oblique edge crack of length a in a finite rectangular strip of width w and length 2:5b ðb ¼ wÞ
as shown in Fig. 12, subjected to a uniform tensile stress r on the strip ends. As already mentioned, D
represents the IE sub-domain, and X represents the FE sub-domain. A total of 57 master nodes are uni-

formly distributed along the coupling interface C0. This geometric configuration is selected since it has been

analyzed by Leung and Su (1995). The crack makes an angle b on the long edge of the strip. Two geometric

factors, for b ¼ 90�, 67.5� and 45� and for a=w ¼ 0:2, 0.3, 0.4, 0.5, and 0.6 have been considered. Fig. 13

represents the comparison of the results for the normalized mode I SIF for various values of b and a=w
obtained from the IE–FE coupling approach, with the results of Leung and Su (1995). The results from

both methods agree well.

Table 2

Normalized SIF of CCT by IE–FE coupling method

a=w KI=r
ffiffiffiffiffiffi
pa

p
ðn ¼ 0:9Þ

Present RD (%) Theoretical

0.05 1.018672 0.71 1.01145

0.1 1.027433 0.11 1.02628

0.2 1.102886 0.01 1.10272

Fig. 11. Normalized SIF for CCT by IE–FE coupling method.

Table 3

Normalized SIF of CCT by IE–FE coupling method in variation of proportionality ratios n ða=w ¼ 0:05)

n KI=r
ffiffiffiffiffiffi
pa

p

Present RD (%)

0.5 1.032780 2.10

0.6 1.027602 1.60

0.7 1.022602 1.10

0.8 1.020095 0.85

0.9 1.018672 0.71

0.95 1.018405 0.69

Theoretical 1.011450
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Example 5. IE–FE coupling method in parallel internal cracks problem

Consider a strip with a row of four parallel center-through-cracks 2a subjected to uniform tensile stress

r, as shown in Fig. 14. The spacing between the cracks is d. The schematic mesh configuration in the strip

Fig. 12. IE–FE coupling computational model of slant edge crack problem.

Fig. 13. Mode I SIF for slant edge crack problem.
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is the same as shown in the figure. Four identical IE sub-domains D1, D2, D3, and D4 are generated around

the crack tips to form four IE. The proportionality ratio n is selected as 0.9 to calculate the IE stiffness

matrix of K IEM. Based on the similar partition property of two-dimensional isoparametric elements des-

cribed in Section 2.1, all of the IE have an identical stiffness matrix. Therefore only one of the IEs, say K IEM

at D1 need to be calculated. After IEM formulation, four IEs with the same stiffness matrix are then as-

sembled into a global stiffness matrix formed in the FE sub-domain X. Following the same approach as in

Example 3, we can obtain SIF for each crack.

Since no closed-form solution for this example, we only can compare numerical results with the ana-

lytical solution of an infinite long strip with periodically parallel-arranged and equally-spaced cracks. The

analytical expression for the mode I SIF can be expressed as (Men�cc�llk, 1992)

KI ¼ r
ffiffiffiffiffiffiffiffiffi
ðpaÞ

p
f ða=dÞ for 2a � w ð47Þ

where the f ða=dÞ factor characterizes the effect of the crack length to crack spacing ratio. This factor is

found as follows

f ða=dÞ ¼ e�1:68q 	 ð1þ 1:68qÞ ð48Þ

where q ¼ 2a=d and it was chosen as 0.2 in this example. The RD estimate of the normalized mode I SIF

KI=r
ffiffiffiffiffiffi
pa

p
for cracks at D1 and D2 is listed in Table 4. The result obtained from D2 agrees well with the

analytical solution with as little difference as 1.91%. The result obtained from D1 is slightly larger because

the crack in D1 is near the load end. It can be expected that the damage and failure of the strip with parallel-
arranged and equally-spaced cracks would first initiate at the tips of the deviating cracks.

Fig. 14. IE–FE coupling computational model of four parallel center cracks problem.

Table 4

Normalized SIF of four parallel center cracks problem

IEM domain KI=r
ffiffiffiffiffiffi
pa

p
ðn ¼ 0:9; 2a=d ¼ 0:2Þ

Present RD (%) Theoretical

D1 0.99946 4.68 0.954736

D2 0.97296 1.91 0.954736
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Example 6. IE–FE coupling method in collinear internal cracks problem

Consider a rectangular plate with two collinear cracks of equal length, 2a, under uniform tensile stress, as

shown in Fig. 15. The geometric factors of the cracked plate, crack-spacing-to-width ratio ðe=b ¼ 0:5Þ, four
height-to-width ratios ðc=b ¼ 1:5; 1; 0:75; 0:5Þ and three crack-length-to-width ratios ða=e ¼ 0:4; 0:5; 0:6Þ are
taken into consideration. Four IE sub-domains of D1, D2, D3, and D4 are generated to form four IEs around

four crack tips of the two collinear cracks. The region X outside the IE sub-domains is modeled using FEM.

A total of 51 master nodes exist, uniformly distributed along the boundary of each IEM sub-domain. In D1,

D2, D3, and D4, the proportionality ratio n is selected as 0.9 with respect to the related crack tip as their

similar partition center. Based on the similar partition property, only two IE stiffness matrices, say KD1
and

KD2
at D1 and D2, need to be calculated and they accurately represent the other two IE stiffness matrices of

KD3
and KD4

at D3 and D4, respectively. In MATLAB programming, the geometric factor of the crack-
length-to-width ratio is parameterized so that it is very easy to adjust crack length by varying the coordinate

value of the crack tip.

The normalized mode I SIF at crack tips A and B, as shown in Fig 15, for the different divided cases are

calculated and the numerical results are listed in Tables 5–7 in comparison with those of Wang (1997).

When compared with those by Wang, who uses the boundary force method, good agreements are obtained.

The RD of our results stays within 4% of the Wang�s solution. It is clear that subsequently increasing the

crack-length-to-width ratio and decreasing the height-to-width ratio of the plate would lead to increasing

the SIF.
The above two examples illustrate that the proposed IEM/FEM coupled method is highly efficient and

accurate enough to be used for solving elastic multiple crack problems.

Fig. 15. IE–FE coupling computational model of two collinear cracks problem.

1990 D.S. Liu, D.Y. Chiou / International Journal of Solids and Structures 40 (2003) 1973–1993



Table 5

Normalized SIF of two collinear cracks problem in the case of a=e ¼ 0:4

c=b FI a=e ¼ 0:4

Ref. Present RD (%)

1.5 FIA 1.0930 1.0998 0.62

FIB 1.0960 1.1009 0.45

1.0 FIA 1.0967 1.0994 0.25

FIB 1.0955 1.0967 0.11

0.75 FIA 1.1076 1.1097 0.19

FIB 1.1013 1.1021 0.07

0.5 FIA 1.1678 1.1872 1.66

FIB 1.1714 1.1896 1.55

FIA ¼ KIA

r
ffiffiffiffiffiffi
pa

p ; FIB ¼ KIB

r
ffiffiffiffiffiffi
pa

p .

Table 6

Normalized SIF of two collinear cracks problem in the case of a=e ¼ 0:5

c=b FI a=e ¼ 0:5

Ref. Present RD (%)

1.5 FIA 1.1573 1.1429 1.24

FIB 1.1630 1.1457 1.49

1.0 FIA 1.1633 1.1574 0.51

FIB 1.1610 1.1526 0.72

0.75 FIA 1.1792 1.1767 0.21

FIB 1.1664 1.1617 0.40

0.5 FIA 1.2562 1.2850 2.29

FIB 1.2584 1.2879 2.34

Table 7

Normalized SIF of two collinear cracks problem in the case of a=e ¼ 0:6

c=b FI a=e ¼ 0:6

Ref. Present RD (%)

1.5 FIA 1.2535 1.2191 2.74

FIB 1.2632 1.2236 3.14

1.0 FIA 1.2626 1.2469 1.24

FIB 1.2587 1.2387 1.59

0.75 FIA 1.2837 1.2748 0.69

FIB 1.2609 1.2484 0.99

0.5 FIA 1.3697 1.4060 2.65

FIB 1.3629 1.4066 3.20
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4. Conclusion

An elegant IE–FE coupling algorithm was demonstrated to provide highly accurate numerical solutions

for two-dimensional multiple crack problems. This method is equally well suited for the usual regularity
closed domain and other types of singularities; e.g. re-entrant corners, dissimilar material junctions. Based

on the similarity partition concept for isoparametric elements along with the IEM formulation, great

numbers of infinitesimal elements are automatically generated layer by layer around the singularity point in

each IE sub-domain. All of the d.o.f.�s in the IE sub-domain, except for those associated with the coupling

interface, are condensed and transformed to form a so-called ‘‘Infinite Element IE’’ with master nodes only.

We also proposed the convergence criterion for obtaining the countable ‘‘infinite layers’’, scr, which assures

that KZ is convergent. All of the IEs are treated as regular FEs and their stiffness matrices are assembled

into the system stiffness matrix for the FE sub-domain. The resultant FE solution with a symmetrical
stiffness matrix, having the singularity effect of imbedded cracks in IEs, is required only for solving multiple

crack problems. No prior governing assumption is required and no special FEs, such as singular, hybrid

and boundary elements need be incorporated. No further parametric refinement analysis is needed because

of the high IEM formulation convergence. The corresponding round-off errors, CPU time, and PC memory

storage on these computations are also significantly reduced.

The numerical examples given in this paper validated and illustrated the proposed methodology. Good

agreements were obtained between the known results and the proposed method. A parameter study of the

various proportionality ratios is also conducted. From the numerical example, a proportionality ratio n
equal to 0.9 can obtain very good numerical results. Decreasing n lower to 0.5 still obtains reasonable

results from the proposed method.
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